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NOTES PART III: EULER EQUATIONS

The objective of this section is to describe the local solutions of Euler differential equations L0y = 0 at 0

in the case where a local exponent ρ is a multiple root of the indicial polynomial χL0 .

The situation for general linear differential equations Ly = 0 (always assuming the singularities to be

regular) will be discussed in a later chapter. The construction of solutions of Ly = 0 goes back to Fuchs

and Frobenius. The latter cites in [Frob1] two papers of Fuchs as predecessors of his investigation [Fuchs1,

Fuchs2] as well as a paper of Thomé [Thom1], p. 200, shortening the proof of Fuchs, see also [Thom2,

Thom3]. In [Mez, p. 58] the author attributes the first description of the solutions and the use of variation of

constants to Fuchs, while Frobenius improved and simplified Fuchs’ construction by treating the solutions

involving logarithms directly. See [Gray, J.: Linear differential equations and group theory from Riemann

to Poincaré. Birkhäuser, 2000] for a historical account.

Ince [Ince, footnote, p. 396] reproduces quite accurately their methods, see also section 4.3 in [Mez]. You

may also consult [Teschl, section 4.4, p. 134] for an exposition of Frobenius’ method. Mezzarobba presents

also another method to construct solutions, developed apparently by Heffter in 1894 and exposed in the

book of Poole from 1936, see [Mez, section 4.4, Poole, V.16]. We will present here a slightly modernized

version of the Frobenius story. Some astonishing turns will enrich our journey.

It turns out that from now on logarithms will appear. As these are no longer holomorphic at 0 and thus do

not admit a power series expansion, we have to enlarge our space of functions C{x}, C[[x]] or C((x)) so

as to include also powers log(x)k. We do this universally by adjoining a variable z which will mimic the

role of log(x). In the sequel, C((x)) will denote a field of formal Laurent series with monomials whose

exponents may even be complex numbers. In order to have a well defined multiplication, we restrict to the

field generated by series of the form h = xρ
∑∞
i=0 cix

i with ρ ∈ C and i ∈ N. We will neglect in this

section convergence questions and only work formally. Monomials xρ with complex exponents ρ ∈ C will

not do any harm: differentiation is defined as usual, ∂xρ = ρxρ−1. Integration is given by
∫
xρ = 1

ρ+1x
ρ+1

provided that ρ 6= −1.

We denote by C((x))[z] the ring of polynomials in a new variable z with coefficients in C((x)). Working

with C((x))[z] instead of the polynomial ring C((x))[log(x)] in log(x) has notational advantages – the

substance is of course the same. Compare with page 184 in [Honda, T.: Algebraic differential equations,

Symp. Math. 24, 169-204. Academic Press 1981]. We consider C((x))[z] as a differential ring via the

derivation

∂ : C((x))[z]→ C((x))[z],
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∂(xi) = ∂(xi) = ixi−1, ∂z = x−1,

∂(xizk) = (iz + k)xi−1zk−1.

This construction formalizes the differential ring C((x))[log(x)] equipped with the usual differentiation

operator ∂. We shall call ∂ the logarithmic extension of ∂ to C((x))[z]. We claim to have an isomorphism

of differential rings

((C((x))[z], ∂)→ C((x))[log(x)], ∂), z → log(x).

Indeed, the map is linear, surjective and, as ∂(log(x)) = (log(x))′ = x−1, compatible with the derivations

∂ and ∂. It is also injective since a relation
∑m
k=0 hk(x) log(x)

k = 0 with hk ∈ C((x)) implies that all hk
are 0. This last part is due to the fact known from analysis that log(x) is transcendental over C((x)), i.e.,

does not satisfy any polynomial relation with coefficients in C((x)). We have the differentiation rule

∂(
∑m
k=0 hk(x)z

k) =
∑m
k=0 ∂hk(x)z

k +
∑m
k=1 khk(x)x

−1zk−1.

Note that ∂ does not increase the degree in z of polynomials in C((x))[z]. If we denote by C((x))[z] =⊕∞
k=0 C((x))[z]k the natural grading defined by the degree in z, we get by restriction maps

∂ : C((x))[z]k → C((x))[z]k ⊕ C((x))[z]k−1.

We may thus write

∂ = ∂ + θz : C((x))[z]→ C((x))[z],

where ∂(h(x)zk)) = ∂(h(x))zk = h′(x)zk and where the map θu defined by

θz(h(x)z
k) = h(x)∂(zk) = kx−1h(x)zk−1

sends C((x))[z]k to C((x))[z]k−1 for k ≥ 1, and is 0 on C((x)). This definition reflects, of course, the

differentiation rule for the logarithm,

∂(h(x) log(x)k) = h′(x) log(x)k + kx−1h(x) log(x)k−1.

The image of ∂ is the C-subspaceH of C((x))[z] of polynomials
∑m
k=0 hk(x)z

k satisfying the integrability

condition

∂(xhk−1(x)) = khk(x)

for all k ≥ 0. Integration on C((x)) is now defined by
∫
xρ = 1

ρ+1x
ρ+1 for ρ 6= −1 and

∫
x−1 = u [we

set the additive constants equal to 0]. It is a map
∫
: C((x)) → C((x))[z] which can be trivially extended

to the subspace H of C((x))[z]. Thus
∫

: H → C((x))[z] is a right inverse to ∂, say ∂ ◦
∫

= IdH .

Arbitrary elements
∑m
k=0 hk(x)z

k ∈ C((x))[z] cannot be integrated in general, so
∫

does not extend to a

map C((x))[z]→ C((x))[z] inverse to ∂.

Let L be an n-th order linear differential operator on C((x)),

L = p0∂
n + p1∂

n−1 + . . .+ pn−1∂ + pn,

with coefficients pi in C((x)). We extend L to the operator L on C((x))[z] defined by

L = p0∂
n + p1∂

n−1 + . . .+ pn−1∂ + pn.

L(h(x)zk) = ∂h(x)zk + kh(x)x−1zk−1.

This operator is now compatible with the substitution of z by log(x):
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Proposition. Let L be a differential operator on C((x)) with extension L to C((x))[z] as defined

above. Let ρ ∈ C, k ∈ N, and h(x) ∈ C[[x]] a formal power series. Then

L(xρh(x) log(x)k) = L(xρh(x)zk)|z=log(x).

Proof. This holds by definition of ∂ and since log(x)′ = x−1. 	

Corollary. The solutions of a differential equation Ly = 0 in C((x))[log(x)] are in bijection with

the solutions of the associated equation Ly = 0 in C((x))[z]. 	

Example. The Euler equation x2y′′ + 3xy′ + 1 = 0 with operator L = x2∂2 + 3x∂ + 1 has indicial

polynomial χL = ρ(ρ− 1) + 3ρ+ 1 = (ρ+ 1)2 with double root ρ = −1. It is immediately checked that

y1 = x−1 and y2 = x−1 log(x) are solutions of Ly = 0. The operator L = x2∂2 + 3x∂ + 1 therefore has,

as it should be, solutions x−1 and x−1u. Indeed, ∂(x−1z) = x−2(−z + 1) and

∂2(x−1z) = ∂(x−2(−z + 1)) = −2x−3(−z + 1)− x−3 = x−3(2z − 3).

Thus,

L(x−1z) = x−1(2z − 3) + 3x−1(−z + 1) + x−1z = x−1(2z − 3− 3z + 3 + z) = 0.

The proposition and its corollary guarantee that when we search for logarithmic solutions of a differential

equation Ly = 0 we may study instead the differential equation Ly = 0 on C((x))[z], with L associated to

L as above. This notational trick simplifies substantially the formulation of the problem.

The evaluation of the induced linear map L : C((x))[z] → C((x))[z] on elements
∑
hkz

k requires a

multiple application of the product rule, since each ∂j = (∂ + θz)
j is a j-fold composition. We will see

that there evolves a precise pattern which we will explore next. We first concentrate on Euler operators.

Examples. (1) Let L = ∂ and L = ∂. Then

∂(xizk) = ixi−1zk + xix−1kzk−1 = (iz + k)xi−1zk−1.

(2) Let L = ∂2, L = ∂2. Then

∂2(xizk) = ∂(ixi−1zk + kxix−1zk−1)

= ∂(ixi−1zk + kxi−1zk−1)

= i2xi−2zk + kixi−2zk−1 + k(i− 1)xi−2zk−1 + k2xi−2zk−2

= i2xi−2zk + (2i− 1)kxi−2zk−1 + k2xi−2zk−2

= i2xi−2zk + (i2)′kxi−2zk−1 + 1
2 (i

2)′′k2xi−2zk−2,

where (t2)′ = (t(t− 1))′ = 2t− 1 and (t2)′′ = (t(t− 1))′′ = 2 denote the first and second derivatives of

t2 with respect to the variable t. This computation suggests a general formula for ∂j . Here it is.

Lemma 1. For j, ` ∈ N and ρ ∈ C, denote by (ρj)(`) the evaluation at t = ρ of the `-th derivative

(tj)(`) := ∂`t (t
j) of the falling factorial tj = t(t− 1) · · · (t− j + 1). Then

∂j(xρzk) = ρjxρ−jzk + (ρj)′kxρ−jzk−1 + . . .+ 1
j! (ρ

j)(j)kjxρ−jzk−j .

= [ρjzj + (ρj)′kzj−1 + . . .+ 1
j! (ρ

j)(j)kj ] · xρ−jzk−j .

Remark. A similar formula appears in [Mezzarobba, Prop. 4.14 and 4.16, p. 69, 70].

Proof. To prove the formula, use induction on j and the following identities. 	
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Lemma 2. The derivatives of the falling factorials satisfy, for j ∈ N, the identities

tj + (tj)′(t− j) = (tj+1)′,

(tj)′ + 1
2 (t

j)′′(t− j) = 1
2 (t

j+1)′′,

1
2 (t

j)′′ + 1
6 (t

j)′′′(t− j) = 1
6 (t

j+1)′′′,

. . .

1
(j−1)! (t

j)(j−1) + 1
j! ((t

j)(j)(t− j) = 1
j! (t

j+1)(j),

1
j! ((t

j)(j) = 1
(j+1)! ((t

j+1)(j+1).

The general formula for ` = 0, ..., j − 1 is

1
`! (t

j)(`) + 1
(`+1)! ((t

j)(`+1)(t− j) = 1
(`+1)! (t

j+1)(`+1).

Proof. The first equation follows directly from the product rule, say

(tj+1)′ = (tj(t− j))′ = (tj)′(t− j) + tj .

The other identities are proven by successive differentiation of the first equation. For instance, deriving the

first equation gives

(tj)′ + (tj)′′(t− j) + (tj)′ = (tj+1)′′,

which is just the second equation. Differentiation of the equation for the general formula gives

1
`! (t

j)(`+1) + 1
(`+1)! ((t

j)(`+2)(t− j) + 1
(`+1)! ((t

j)(`+1) = 1
(`+1)! (t

j+1)(`+2).

Then use 1
`! +

1
(`+1)! =

`+2
(`+1)! to get the next equation

1
(`+1)! (t

j)(`+1) + 1
(`+2)! ((t

j)(`+2)(t− j) = 1
(`+2)! (t

j+1)(`+2).

This proves the claim. 	

The next result, which follows from the above, will be the clue to understand why logarithms appear in the

solutions of differential equations when the local exponents are multiple roots of the indicial polynomial.

Lemma 3. Let L0 =
∑n
i=0 cix

i∂i be an Euler operator of shift 0, and let L0 =
∑n
i=0 cix

i∂i be the

associated operator on C((x))[z]. Denote by χ0(ρ) =
∑n
i=0 ciρ

i the indicial polynomial of L0, and

by χ
(j)
0 its j-th derivative. Let ρ ∈ C and k ∈ N. Then

L0(x
ρzk) = xρ · [χ0(ρ)z

k + χ′0(ρ)kz
k−1 + . . .+ 1

n!χ
(n)
0 (ρ)knzk−n].

Proof. This is a consequence of the formula for ∂j(xρzk) in Lemma 1. 	

Remark. Note that for k < n (which will be the relevant case) no negative powers of z appear in the

expansion of L(xρzk) because kj = 0 for j > k. In this case the formula reduces to

L(xρzk) = xρ · [χL(ρ)zk + χ′L(ρ)kz
k−1 + . . .+ 1

(k−1)!χ
(k−1)
L (ρ)kk−1z + 1

k!χ
(k)
L (ρ)k!].

Proposition. If ρ ∈ C is an m-fold root of the indicial polynomial P0 of an Euler operator L0, then

xρ, xρ log(x),..., xρ log(x)m−1 are solutions of L0y = 0.

Proof. Indeed, ρ being an m-fold root of χ0 signifies that χ(k)
0 (ρ) = 0 for k = 0, ...,m − 1, whence

L0(x
ρzk) = 0. Substituting z by log(x) in this equation gives L0(x

ρ log(x)k) = 0. 	
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Corollary. Let L0 =
∑
i−j=τ cijx

i∂j be an Euler operator with indicial polynomial χ0(ρ) =∑n
j=0 cijρ

j. Let ρ1, ..., ρq ∈ C be the distinct roots of χ0, each with multiplicity m1, ...,mq, re-

spectively. Then xρi , xρi log(x),..., xρi log(x)mi−1, i = 1, ..., q, form a C-basis of local solutions of

L0y = 0 at 0.

Proof. Clearly, these solutions are C-linearly independent. As there cannot be more than n = ordL =

degχ0 =
∑q
i=1mi linearly independent solutions, they already form a C-basis. 	

Our next objective will be to “lift” the solutions of Euler equations to solutions of arbitary linear differential

equations Ly = 0 by interpreting the operator L as an arbitrarily small perturbation of its initial form

L0 = in(L). This cannot work without some extra effort since whereas the initial form L0 of an operator L

sends monomials xi in C((x)) to monomials xi+τ , this is no longer true for L0, since already for L0 = ∂

we have that L0(x
izk) = (iz + k)xi−1zk−1 is now a binomial in z. We may have to apply L−10 to each

degree in z, say, L−1 : C((x))[z]k → C((x))[z]k, instead of trying with L−10 . But, of course, L−10 is no

longer compatible with the substitution z → log(x). So complications will have to be expected - but we

will resolve them.
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